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Abstract: Many large-scale parallel scientific and engineering applications, especially climate modeling, often 
run for lengthy periods and require data checkpointing periodically to save the state of the computation for a 
program restart. In addition, such applications need to write data to disks for post-processing, e.g., visualization. 
Both these scenarios involve a write-only pattern using Hierarchal Data Format (HDF) files. In this paper, we 
study the scalability of CXFS by HDF based Structured Adaptive Mesh Refinement (AMR) application for three 
different block sizes. The code used is a block-structured AMR hydrodynamics code that solves compressible, 
reactive hydrodynamic equations and characterizes physics and mathematical algorithms used in studying nuclear 
flashes on neutron stars and white dwarfs. The computational domain is divided into blocks distributed across the 
processors. Typically, a block contains 8 zones in each coordinate direction (x, y, and z) and a perimeter of guard 
cells (in this case, 4 zones deep) to hold information from the neighbors. We used three different block sizes of 
8x8x8, 16x16x16, and 32x32x32. Results of parallel I/O bandwidths (checkpoint file and two plot files) are 
presented for all three-block sizes on a wide range of processor counts, ranging from 1 to 508 processors of the 
Columbia system. 
 
Key words: parallel I/O, clustered file system (CXFS), benchmarking, performance evaluation, HDF5, adaptive 
mesh refinement, AMR. 

1 Introduction 

NASA’s many large-scale parallel scientific and 
engineering applications often run for lengthy 
periods and require data checkpointing periodically 
to save the state of the computation for a program 
restart. These applications include climate modeling 
applications such as the Goddard Earth Observing 
System 4/5 Global Climate Model (GEOS-4/5 
GCM) from the Global Modeling and Assimilation 
Office (GMAO), located at NASA Goddard Space 
Flight Center (GSFC) [1], and Weather Research 
Forecasting (WRF) codes [2]. In addition, such 
applications need to write data to disks for post-
processing, for example, for visualization. Both 
these scenarios involve a write-only pattern using 
Hierarchical Data Format (HDF) files [3]. Each 
GEOS-4/5 file contains a single HDF-EOS grid, 
which in turn includes a number of geophysical 
variables. Some files contain 2-D variables on a 
longitude/latitude grid and some files contain 3-D 
variables on the same longitude/latitude grid but 
with an additional vertical dimension.  

Recently, NASA, under its new National Leadership 
Computing System (NLCS) initiative chartered to 
provide resources to computationally intensive 
research projects in the national interest, has 
awarded a million hours of compute time on the 
Columbia system to Dr. Greg Holland and his team 
at the National Center for Atmospheric Research 
(NCAR), They will run the WRF code to simulate 
weather at high, cloud-resolving resolution to 
determine how moist convection impacts natural 
climate change, such as hurricane frequency and 
intensity [4]. This will provide an understanding of 
future hurricane impacts, leading to much improved 
understanding of how climate both influences, and 
is influenced by, human activities. The WRF code 
involves massive I/O of about 6.5 terabytes (TB) 
that can be accessed via either sequential or parallel 
HDF. Also, the National Science Foundation (NSF) 
and the Department of Defense (DoD) High 
Performance Computing Modernization Office 
(HPCMO) have adopted a benchmark version of 
WRF for testing future generation of petaflops-class 
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computing systems [5]. WRF will be run in the 
2,048-processor shared-memory Columbia 
supercomputer environment, located at the NASA 
Advanced Supercomputing (NAS) facility at Ames 
Research Center under the Shared Capability Assets 
Program (SCAP), which funds the High-End 
Computing Columbia Project. 

In both the GEOS-4/5 and WRF codes, the 
performance bottleneck is in the I/O. Therefore, it is 
important to understand the I/O characteristics of 
modern supercomputers such as Columbia and look 
for ways to improve I/O performance. 

To get a better understanding of how the I/O 
systems of one of today’s leading supercomputers 
perform, we undertook a study to benchmark the 
parallel I/O performance of NASA's Columbia 
supercomputer. In particular, we characterize the 
parallel I/O performance and scalability of SGI’s 
CXFS (Clustered XFS) file system [6] on Columbia 
running an HDF-based Structured Adaptive Mesh 
Refinement (AMR) application for three different 
block sizes. 

The rest of this paper is organized as follows. In 
Section 2, we present the architectural details of 
Columbia and its file system. In Section 3, we 
describe the HDF-based AMR application used in 
this study. In Section 4, we present and analyze the 
results of the benchmarking study. We conclude in 
Section 5 with a discussion of future work. 

2 An Overview of Columbia 
2.1 Columbia Architecture  

Columbia consists of twenty 512-processor SGI 
Altix computers. Twelve of these are model 3700, 
and eight are model BX2. Because the experiments 
in this paper were conducted on BX2 systems, we’ll 
confine our discussion to that architecture. 

In the SGI 3700 BX2 system, eight Intel Itanium 2 
processors are grouped together in a brick, called a 
C–brick, which is connected by a NUMALink4 
interconnect to another C-brick. Each pair of 
processors shares a peak bandwidth of 3.2 gigabytes 
per second (GB/s). Peak bandwidth between nodes 
is 1.6 GB/s [7-11]. 

The SGI Altix is a Cache Coherent - Non-Uniform 
Memory Access (CC-NUMA) system. Local cache-
coherency is used to maintain the cache coherency 

between processors on the Front Side Bus (FSB). 
Global cache coherency protocol is implemented by 
the Scalable Hub (SHUB) chip and is a refinement 
of the protocol used in the DASH computing system 
developed at Stanford University, which is directory 
based. The advantage of the directory-based cache–
coherent protocol is that only the processors that are 
playing an active role in the usage of a given cache 
line need to be informed about an operation. This 
reduces the flow of information, at the cost of using 
about 3 percent of memory space for the directory.  

The combination of compute processors, memory, 
SHUBs, and R-brick constitute the interconnect 
fabric called NUMALink. The SHUB is a 
proprietary Application Specific Integrated Circuit 
(ASIC) designed by SGI and fabricated by IBM, 
which handles the functions including: (a) global 
cache coherency protocol; (b) memory controller for 
the local memory on the node; (c) interface to I/O 
subsystem; (d) interface to the interconnection 
network with other nodes; and (e) globally 
synchronized high-resolution clock. The SGI Altix 
3700 BX2 uses NUMALink4, a high-performance 
network with fat-tree network topology. In fat-tree 
network topology, the bisection bandwidth scales 
linearly with the number of processors. 

Each Altix has globally shared memory. It is a 
single-system image (SSI) design, which means that 
a single memory address space is visible to all the 
computing system resources. SSI is achieved 
through the NUMALink memory interconnect. It is 
a Non-Uniform Memory Access Flexible 
(NUMAflex) system as scaling can be done in three 
dimensions, namely the number of processors, the 
memory capacity, and the I/O capacity. This 
NUMAflex architecture supports up to 2048 Intel 
Itanium 2 processors and four TB of memory. 

At NAS, four of the BX2s are organized as a 
capability platform by interconnecting with three 
networks – (a) NUMALink4, (b) InfiniBand, and (c) 
10 Gb Ethernet [13, 16, 18]. The InfiniBand and 
Ethernet interconnects connect to the other 16 
boxes, as well [12-15].  

2.2 File System on Columbia 

In the past, the 20 Altix machines of Columbia 
accessed a shared Network File System (NFS) 
containing the users’ home directories. Due to the 
relatively poor performance of NFS file systems, 
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each of the machines also had a local XFS-based 
scratch disk (/nobackupi, where i=1, 2, 3, …, 20), 
and users employ these scratch disks for their 
performance-sensitive I/O. However, this 
configuration was not conducive to efficient use of 
the Columbia system. For example, if users of host 
Columbia5 wanted to run an application on 
Columbia9, they had to ensure that files accessed by 
their application on /nobackup5 also existed on 
/nobackup9. In addition, the design of the NFS file 
system is to provide distributed access to files from 
multiple hosts, and its consistency semantics and 
caching behavior are, accordingly, designed for such 
access. A typical scientific-computing workload 
does not mesh well with the semantics of NFS, 
especially for concurrent writes. Therefore, in 
February 2006, the Columbia system was 
reconfigured to take advantage of SGI’s Clustered 
XFS (CXFS) technology, which overcomes the 
problems associated with NFS and permits a more 
efficient shared file system.  

With CXFS, the metadata about files is still 
managed by shared servers, but each host has direct 
access via Fibre Channel to the file data disks. In the 
systems under test (nodes C17-20), each host 
communicates with its domain’s three metadata 
servers via gigabit Ethernet.  The file system data 
blocks are accessed across four 4-Gb/s, Fibre 
Channel connections to dual, 2-Gb/s RAID 
controllers, each with 2.5 GB of cache, interfacing 
with 30 TB of disk space striped across 8 logical 
unit numbers (LUNs) of 8+1 RAID-3 [3]. Figure 1 
shows the configuration as it will be when the 
controllers are upgraded to larger, 4-Gb/s models. 
The configuration under test was midway through 
an upgrade from 2 Gb/s Fibre Channel to 4 Gb/s. In 
particular, the disk controllers were still only 2 Gb/s. 

3 Application Used 
We have used an HDF5-based application to study 
the scalability and performance characterization of 
CXFS on Columbia. We describe HDF5 and the 
application below. 

3.1 HDF5 Interface 

HDF5 is an I/O library from the National Center for 
Supercomputing Applications (NCSA). HDF5 is a 
de facto standard in the scientific and engineering 
community including the NASA Earth Observing 

System project of the NASA Earth Observatory. Its 
data model consists of hierarchical data organization 
in a single file, typed multidimensional array 
storage, and attributes on datasets. Its features 
include C, C++, and Fortran interfaces; portable 
data format, optional compression (not in a parallel 
I/O mode); data reordering (chunking) and 
noncontiguous I/O (memory and file with 
hyperslabs). Within a dataset space, subsets may be 
selected when non-contiguous data access is 
required. These dataspace subsets are referred to as 
hyperslabs. In many aspects, these subsets are 
similar to MPI derived datatypes. 

 
Figure 1: The Columbia 2048 cluster’s CXFS I/O 
configuration (future).  

The HDF5 files consist of groups, datasets, and 
attributes. Groups are like directories, holding other 
groups and datasets. Datasets hold arrays of typed 
data, where a datatype describes the type and a 
dataspace gives the dimensions of the array. 
Datatypes can be atomic (integers, floats, and 
others) or compound like structures of C. Attributes 
are small datasets associated with the file, group, or 
another datasets. They have a datatype and 
dataspace and can only be accessed as unit.  

HDF5 is a bit different from previous HDF releases 
such HDF4. Differences include: (a) Support for 
files greater than 2 GB in size, even on 32-bit 
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platforms (as long as they conform to the LFS 
conventions); (b) much simpler set of objects, 
consisting of multidimensional arrays of data 
elements and grouping objects; and (c) support for 
threading and parallel I/O using MPI-IO.  

The HDF5 API provides a property list that is an 
object containing properties of HDF5 files, 
including on-disk layout, chunking sizes, filters, a 
list of external HDF5 files to be “mounted” as part 
of the HDF5 file system within a file, and 
interactions with underlying I/O systems (e.g. MPI-
IO). As different high-end computing systems vary 
a great deal in how they handle I/O, the selection of 
properties often depends on which computing 
systems is being used. 

3.2 FLASH Application 

Massive stars more than ten times the mass of our 
Sun evolve for millions of years and then die in a 
matter of hours in stellar explosions known as core 
collapse supernovae. Such supernovae are one of 
only two classes of supernovae in the universe. Core 
collapse supernovae are neutrino driven, whereas 
“Type Ia” supernovae occur via thermonuclear 
runaway and mark the death throes of less massive 
stars known as white dwarfs.  Type Ia supernovae 
are the brightest thermonuclear explosions in the 
universe.  The explosion begins when a few hot 
spots near the center of the white dwarf experience a 
runaway in their nuclear energy generation.  An 
unstable front of turbulent combustion speeds 
through the star, turning most of it into iron, and 
blowing it apart.  A first-principles understanding of 
these explosions eluded astrophysicists for decades.  
Using Columbia, researchers from the University of 
California, Santa Cruz, and Lawrence Berkeley 
National Laboratory have simulated nuclear fusion 
flames for enough time to see its turbulent structure 
develop. 

The FLASH application  [9] is a parallel code 
written in Fortran 90 using the MPI paradigm.  It 
solves compressible, reactive hydrodynamic 
equations using adaptive mesh refinement (AMR) to 
study the problems of nuclear flashes on the 
surfaces of neutron stars and white dwarves, in 
particular X-ray bursts, type Ia supernovae, and 
classical novae. Algorithms used in the FLASH 
code are parallel adaptive mesh refinement with 
PARAMESH [10], compressible hydrodynamics 

with PROMETHEUS, a stellar EOS, and nuclear 
burning. PARAMESH is a package of FORTRAN 
90 subroutines designed to provide an application 
developer with an easy route to extend an existing 
serial code that uses a logically Cartesian structured 
mesh into a parallel code with AMR. PARAMESH 
falls into a class of AMR techniques known as 
block-structured AMR. The computing paradigm 
that PARAMESH uses is single program multiple 
data (SPMD); that is, the same code executes on all 
the processors but the local data content modifies 
the program flow on each processor. The 
computational domain is divided into blocks of 
dimension 8x8x8, 16x16x16, and so on. Each block 
has a perimeter of four guard cells to hold the state 
variables of the neighboring blocks. Block hierarchy 
is managed by an oct-tree method, and load 
balancing is performed by a weighted space filling 
curve through the blocks, which produces a one 
dimensional ordering of blocks. 

FLASH I/O is a smaller version of the FLASH code 
that simply mimics FLASH’s I/O patterns. The data 
domain is divided into blocks distributed across the 
processors. The benchmark uses the parallel HDF5 
library for data I/O. It produces three output files: 
(a) a checkpoint file, (b) a plot file for centered data, 
and (c) a plot file for corner data. These three output 
files are very different: the checkpoint file is large 
and dense, whereas the two plot files are smaller and 
sparse. The checkpoint file stores all the data 
variables (excluding the guard cells), the tree 
structure, and some additional data including the 
current simulation time, current time step and the 
number of steps. A total of 24 separate I/O 
operations are performed during checkpointing, one 
for each variable (pressure, velocity, density, 
energy, entropy, free energy, etc). Plot files (with 
and without corners) have the same format as 
checkpoint files but with fewer variables and half 
the precision (four bytes vs. eight in the checkpoint 
file). 

4 Results  
In this section we present the results of our parallel 
I/O experiments on performance characterization 
and scalability of SGI CXFS on SGI Altix BX2. 

The plot in Figure 2 shows the size of checkpoint 
files for three block sizes – 8x8x8, 16x16x16, and 
32x32x32. Here, we notice that the file with blocks 
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of 32x32x32 is about eight times the size the file 
with block size 16x16x16, which in turn is about 
sixteen times the size of the file with 8x8x8 blocks. 

File Size of Checkpoint File for 3 Cases
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Figure 2: Size of checkpoint file for three 
different block sizes. 

Figure 3 shows the size of a plot file with no corners 
for three block sizes – 8x8x8, 16x16x16, and 
32x32x32. Here, we notice that the file with block 
size 32x32x32 is a little more than seven times the 
size the file blocked 16x16x16, which in turn is 
slightly less than seventeen times the size of the file 
blocked 8x8x8. 
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Figure 3: Size of plot file with no corners size for 
three different block sizes. 

Figure 4 shows the size of a plot file with corners 
for three block sizes–8x8x8, 16x16x16 and 
32x32x32. Here, the file with block size 32x32x32 
is slightly less than seven times the size the file with 
blocks of 16x16x16, which in turn is about fourteen 
times the size of the file blocked 8x8x8. 

 
Figure 4: Size of plot file with corners size for 
three different block sizes. 

To see the relative sizes of a checkpoint file, a plot 
file with no corners, and a plot file with corners, we 
have plotted these files for block size 16x16x16, 
shown in Figure 5. The checkpoint files are an order 
of magnitude larger than both plot files. Also, plot 
files with corners are slightly larger than the plot 
files with no corners.  

 
Figure 5: Size of checkpoint file and plot files 
with corner and no corner for a block size of 
16x16x16. 

Figure 6 plots the bandwidth writing checkpoint 
files and plot files with corners and no corners for a 
block size of 8x8x8 on varying number of 
processors. In the entire range of processors from 1 
to 508, the I/O bandwidth to the checkpoint file is 
higher than the plot file with corners, and that in 
turn is higher than the plot file without corners. For 
all the three files, bandwidth increases from 1 
processor to 16 processors—at which bandwidth is 
highest—and then decreases gradually. From 384 to 
508 processors, they are very close to each other.  
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Figure 6: I/O bandwidth of checkpoint and plot files 
for varying number of processors for block size of 
8x8x8. 
The plot in Figure 7 shows bandwidth writing the 
checkpoint file and plot files with corners and no 
corners for a block size of 16x16x16 on varying 
number of processors. For all three files, I/O 
bandwidth increases from 1 processor to 32 
processors, after which it starts decreasing. From 64 
processors to 256 processors, bandwidth to all three 
files gradually decreases—checkpoint is higher than 
the plot file with corners, which is in turn higher 
than the plot file with no corners. From 256 
processors to 508 processors, bandwidth to all three 
files continues decreasing, with bandwidth to the 
checkpoint file higher than bandwidth to both of the 
plot files, which are almost the same. 

 
Figure 7: I/O bandwidth of checkpoint and plot files 
for varying number of processors for block size of 
16x16x16. 
Figure 8 shows the write bandwidth to the 
checkpoint file and plot files with corners and no 
corners for a block size of 32x32x32 on varying 
number of processors. I/O bandwidth to the 

checkpoint file increases from 1 to 4 processors and 
then starts decreasing. Bandwidth to both plot files 
increases from 1 processor to 8 processors. Here, 
results are reported only up to 128 processors 
because the benchmark could not run on 256, 384, 
and 508 processors due to a limited disk quota (400 
GB) for the researchers. Trends in this figure are 
quite different from those of figures 6 and 7. Unlike 
figures 6 and 7, in the processors range from 32 to 
128, bandwidth to the plot file without corners is 
higher than bandwidth to the checkpoint and the plot 
file with corners. 
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Figure 8: I/O bandwidth of checkpoint and plot files 
for varying number of processors on SGI Altix BX2 
for block size of 32x32x32. 
In Figure 9 we plot the data from figures 6 – 8 for 
just the checkpoint files. The I/O bandwidth for 
block sizes 32x32x32, 16x16x16, and 8x8x8 
becomes maximum at 271 megabytes per second 
(MB/s) on 4 processors, 255 MB/s on 32 processors; 
and 152 MB/s on 16 processors, respectively. After 
achieving maximum, bandwidth for all three block 
sizes gradually decreases as the number of 
processors increases. 
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Figure 9: I/O bandwidth of checkpoint file for three 
block sizes on SGI Altix BX2 for various processors. 

Figure 10 shows the I/O bandwidth to a plot file 
without corners for three block sizes of 8x8x8, 
16x16x16, and 32x32x32. For both 16x16x16 and 
32x32x32 the bandwidth becomes maximum at 252 
MB/s on 32 processors. For block size 8x8x8 it 
becomes maximum at 88 MB/s on 16 processors. 
After achieving maximum, bandwidth for all three 
block sizes decreases as the number of processors 
increases. Where data for the 32x32x32 case are 
available, it has the best bandwidth except for 16 
and 32 processors, where 16x16x16 is slightly 
better. The bandwidth for block size 16x16x16 is 
much higher than that of block size 8x8x8. 

 
Figure 10: I/O bandwidth of plot file without 
corners for three block sizes on SGI Altix BX2 
for various processors. 

In Figure 11, the corresponding data for plot files 
with corners is shown. I/O bandwidth for block 
sizes of 8x8x8 becomes maximum at 113 MB/s on 
16 processors; for block size 16x16x16 it becomes 
maximum at 293 MB/s on 32 processors; for block 
size 32x32x32 it becomes maximum at 263 MB/s on 
8 processors. After achieving maximum, bandwidth 

for all three block sizes gradually decreases as the 
number of processors increases. Again, results for 
block size 32x32x32 are available only up to 128 
processors due to limited disk space. For plot file 
with corners, the 16x16x16 case achieves higher 
bandwidth than the 32x32x32 case up to 128 
processors. From all processor counts, bandwidth 
for block size 16x16x16 is much higher than that of 
block size 8x8x8. 

In Figure 12 is plotted the average I/O bandwidth 
for three block sizes on SGI Altix BX2 for 
processors 1 to 128. Here average means average 
bandwidths of checkpoint file, plot file without 
corners and plot file with corners.  

 
Figure 11: I/O bandwidth of plot file with corners for 
three block sizes for various processors. 

For block size of 8x8x8, bandwidth achieves highest 
value of 117 MB/s at 16 processors. For block size 
of 16x16x16, bandwidth achieves highest value of 
268 MB/s at 32 processors. For block size of 
32x32x32, bandwidth achieves highest value of 237 
MB/s at 8 processors. From 32 to 128 processors, 
average bandwidth for all the three block sizes 
decrease gradually. At 128 processors, average I/O 
bandwidth for block sizes 16x16x16 and 32x32x32 
become almost same. 
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Figure 12: Average I/O bandwidth for three 
block sizes on SGI Altix BX2 for processors 1 to 
128.  

Figure 13 is same as figure 12 but extended to 508 
processors. From processors 128 to 508, average I/O 
bandwidth for both the block sizes 8x8x8 and 
16x16x16 decreases gradually, with bandwidth for 
block size 16x16x16 being higher. The difference 
decreases as the number of processors increases, and 
finally at 508 processors, the difference between the 
two becomes very small. 

 
Figure 13: Average I/O bandwidth for three block 
sizes on the SGI Altix BX2 for processors 1 to 508. 

5 Analysis and Conclusions 
We ran the benchmark with a configured maximum 
of 500 blocks per processor. The number of blocks 
assigned per processor depends on the number of 
zones in x, y, and z direction.  For a block size of 
8x8x8, the number of blocks computed by the 
algorithm is 80. Now, the size of each record from a 
single processor in the 8x8x8 case is (8 bytes per 
variable) * (8 zones in x) * (8 zones in y) * (8 zones 

in z) * 80 blocks giving 327,680 bytes per variable.  
Multiplying by 24 variables yields 7,864,320 bytes. 
HDF5 adds a little overhead but the result is a 
checkpoint file size of about 7.6 mebibytes (220 
bytes) (MiB) per processor. 

A similar analysis can be performed for the 
16x16x16 case, except that the number of blocks per 
processor increases to 160 and the zones double in 
each dimension.  The result is a record size of 2.5 
MiB and a file size of about 121 MiB per processor. 

For the 32x32x32 case, the number of blocks per 
processor remains at 160 and the number of zones 
doubles again.  The result is about 20.6 MiB per 
record and 961 MiB per processor. 

Examining figures 6-12, it is clear these data rates 
are quite poor. The theoretical bandwidth limit 
should be (4 data paths) * (2 Gb/s data rate), or 
about 1 GB/s. Other I/O benchmarks have attained 
values near this maximum. A large part of the 
problem is that Columbia’s CXFS is configured 
with a stripe size of 1 MiB. From the preceding 
analysis of file sizes, we see the record size is only 
about 320 kibibyte (210 bytes) (KiB) for the 8x8x8 
checkpoint file.  It is even less for the plot files. The 
8x8x8 case is uniformly the slowest. The 16x16x16 
and 32x32x32 record sizes are both greater than the 
stripe size, but there is no guarantee the I/O records 
are aligned to stripe boundaries. At very low 
processor counts, the 20 MiB 32x32x32 records 
seem to have an advantage over the 2.5 MiB 
16x16x16 records. Very quickly though, as the 
processor counts increase, the more moderately 
sized 16x16x16 records emerge as the winner. 

At larger processor counts, it is apparent the 
processes interfere with each other, but it is unclear 
how much of this interference is due to the HDF5 
layer, and how much to the system I/O layer. 
Results of unpublished benchmarks, not using 
HDF5, show a less steep drop-off in output and a 
higher bandwidth at large process counts [19]. The 
function HDF5write() in HDF5 has two operations – 
(a) gather variables from memory and (b) scatter 
these variables into the file. Probably, low 
performance of HDF5 is due to inefficient 
implementation of the gather and scatter functions.   
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